

Investigation of in-line pressure effect on Pitot tube measurements

Isabelle CARE, LNE-CETIAT (France)

• Flow measurement with a Pitot tube

V

Bernoulli's equation

•
$$P + \rho \times \frac{V^2}{2} = P_t$$

Solved for velocity

$$=\sqrt{\frac{2 \times (P_t - P)}{p}}$$

Measured by a differential pressure instrument assuming:

- ✓ Exactly the same static pressure at the two pressure tap types (static/total)
- ✓ Exactly the same time response of the two pressure lines

• Experimental tests in 2018

- 8 different Pitot tubes
- Measurement of the response time when changing the pressure in a vessel

FLOMEKO 2019 - ORAL SESSION S12.2 Air speed

5

Experimental setup

- Objective
 - Resistance of the two pressure lines (static, total)
- Method
 - Measurement of the flow rate
 - Given upstream pressure at line 1
 - Atmospheric pressure at line 2

Results

Results

Discussion

- Resistance of the pressure line
 - High (i.e. low flow rate)
 - Linear relation to the flow rate
 - Low (i.e. high flow rate)
 - Linear + quadratic relation to the flow rate
 - Smaller time to reach equilibrium
 - Error on differential pressure measurement close to zero

Discussion

FLOMEKO 2019 - ORAL SESSION S12.2 Air speed

10

Conclusion

- Unexpected fluctuations of flow when using a Pitot tube
- Resistance of the static pressure line
- Not related by the Pitot tube type or diameter

Domaine scientifique de la Doua 25 avenue des Arts – BP 52042 69603 VILLEURBANNE CEDEX - FRANCE

Mail : isabelle.care@cetiat.fr

www.cetiat.fr